Today we will introduce an ultrasonic level gauge FMU42 that can be used for level and flow measurement. Below is its display diagram.
Its working principle is that the ultrasonic sensor emits high-frequency pulse sound waves, which reflect when encountering an object. The sensor can obtain the distance based on the time difference between the emitted and received reflected waves, and convert it into a current between 4-20mA for output. It is worth noting that the instrument cannot be in contact with it when measuring the level. The sensor emits ultrasonic pulse signals towards the surface of the liquid. The ultrasonic pulse signal is reflected on the surface of the medium, and the reflected signal is received by the sensor. The device measures the time difference t between sending and receiving pulse signals. Based on the time difference t (and acoustic velocity c), the device calculates the distance between the sensor diaphragm and the surface of the medium, D: D=c ⋅ t/2, and calculates the liquid level L through the distance D. By using the linearization function, the volume V or mass M can be calculated from the liquid level L. The user inputs a known blank distance (E), and the calculation formula for the liquid level (L) is as follows: L=E - D. The built-in temperature sensor (NTC) compensates for the sound velocity changes caused by temperature changes.
The following is a schematic diagram of its measurement system:
The following is a schematic diagram of installation conditions:
The following figure is an example of installation.
Complete the following steps to fix the instrument
The above is its basic introduction
Today we will introduce an ultrasonic level gauge FMU42 that can be used for level and flow measurement. Below is its display diagram.
Its working principle is that the ultrasonic sensor emits high-frequency pulse sound waves, which reflect when encountering an object. The sensor can obtain the distance based on the time difference between the emitted and received reflected waves, and convert it into a current between 4-20mA for output. It is worth noting that the instrument cannot be in contact with it when measuring the level. The sensor emits ultrasonic pulse signals towards the surface of the liquid. The ultrasonic pulse signal is reflected on the surface of the medium, and the reflected signal is received by the sensor. The device measures the time difference t between sending and receiving pulse signals. Based on the time difference t (and acoustic velocity c), the device calculates the distance between the sensor diaphragm and the surface of the medium, D: D=c ⋅ t/2, and calculates the liquid level L through the distance D. By using the linearization function, the volume V or mass M can be calculated from the liquid level L. The user inputs a known blank distance (E), and the calculation formula for the liquid level (L) is as follows: L=E - D. The built-in temperature sensor (NTC) compensates for the sound velocity changes caused by temperature changes.
The following is a schematic diagram of its measurement system:
The following is a schematic diagram of installation conditions:
The following figure is an example of installation.
Complete the following steps to fix the instrument
The above is its basic introduction